University of Nottingham Department of Mechanical, Materials and Manufacturing Engineering

Computer Modelling Techniques

PRACTICAL FE EXAMPLES

Perforated Plate Example

L = 100 mmH = 50 mmt = 5 mm $\sigma_o = 100 \text{ MPa}$

The objective of the analysis is to determine the stress concentration around the hole.

Figure 12: Perforated Plate Subject to Uniaxial Stress

Geometry

Since the plate thickness (in the z-direction) is small, 2D plane stress conditions are applicable.

The plate (both geometry and loads) is symmetrical about the horizontal and vertical axes.

Therefore, only a symmetrical quarter-model needs to be modelled.

Figure 13: Symmetrical quarter of the perforated plate

Material Properties

Assuming a linear elastic analysis, the material properties needed are

E = 70 GPav = 0.3

If the load is high enough to cause local plasticity around the hole, the elasto-plastic stressstrain curve, or at least the yield stress (σ_{yield}) must also be specified.

Boundary Conditions

Displacement Boundary Conditions

On the axes of horizontal and vertical symmetry; the nodes can only slide along the symmetry lines.

- (a) Zero y-displacements (roller conditions) specified on line AB.
- (b) Zero x-displacements (roller conditions) specified on line DE.

Applied Loads

A uniform tensile stress (distributed load), σ_o , is specified at the top surface (line CD).

FE Model

- 2D plane stress linear (4-node) or quadratic (8-node) elements can be used here.
- Either quadrilaterals or triangles, or a combination of the two, can be used.
- Quadratic elements are suitable for this problem, since they can represent the circular hole geometry better than linear elements.
- Since stress concentration is expected around the hole, mesh biasing should be specified around the hole.
- If the yield stress is known, a plasticity check can be performed by checking the maximum value of the effective (von Mises) stress.

Mesh A: 2 Elements

Mesh B: 4 Elements

Mesh C: 8 Elements

Mesh D: 16 Elements

Mesh E: 32 Elements

Figure 14: FE meshes used for the perforated plate example

Figure 15: Comparison of FE and analytical solutions for the perforated plate example (4-node 'linear' elements)

Figure 16: Comparison of FE and analytical solutions for the perforated plate example (8-node 'quadratic' elements)

Figure 17: Exaggerated deformed shape (solid lines) for the perforated plate example

Figure 18: Stress contour plot (σ_{yy}) *for the perforated plate example*

Cantilever Beam Example

Problem Definition

The beam has a square cross-sectional area of side length t.

L = 2 mt = 0.1 mF = 1 kN

The objective of the analysis is to obtain the overall **deflection** of the beam.

Geometry

- Since there is no symmetry in this problem, the whole geometry has to be modelled.
- The geometry can be modelled with beam elements since the geometry and loads satisfy beam bending conditions, i.e. the geometry is long, slender and subjected to only transverse loads.
- It is also possible to model this problem with 2D plane stress elements since the thickness in the z-direction is sufficiently small.

Material Properties

Assuming a linear elastic analysis

E = 200 GPa

v = 0.3

Boundary Conditions

- The cantilever is built-in at the left hand side.
- If beam elements are used, then both the displacement and the slope (gradient of the displacement) at the built-in node must be prescribed as zero.
- If 2D plane stress elements are used, then all nodes on line AD must have zero displacements in the x and y directions, which automatically enforces the built-in condition.

Applied Loads

A point load of magnitude *F* is applied to point C.

If a 2D plane stress model is used, this point force can either be applied at point C, or <u>distributed</u> along the line BC.

FE Model

Two types of elements can be used to model this problem; Beam elements or 2D plane stress elements.

Of course, it is always possible to model this problem using 3D elements, but that would be unnecessary.

3-node beam element mesh (4 elements)

8-node 2D plane stress elements (32 elements)

Figure 20: FE meshes used for the cantilever beam problem

Figure 21: Comparison of FE and analytical solutions for the cantilever beam problem

2D plane stress element mesh

Figure 22: Deformed shapes (solid lines) for the cantilever beam problem

Key Points for FE

- FE analysis, specify the geometry, material properties, analysis type, displacement boundary conditions and applied loads.
- **Question** the inputs and assumptions and their sensitivity to your model
- **Simplify** Reduce the size & complexity of your problem
 - Reduce complexity of your model (geometry, physics, loading conditions)
 - Reduce dimensions of your problem $(3D \rightarrow 2D)$
 - Apply symmetry
- **Check** carefully FE solutions they are and not taken for granted to be accurate.
- **Perform mesh convergence** studies on your analyses to have confidence in FE accuracy

Validate your models either analytically or experimentally

References for Commercial FE Software

On your future engineering journey you will hear about many different FE analysis software.

However, what we learnt applies to all the software!

★ Student edition available